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We show that in the limit of large and positive atom–
atom scattering length the properties of an atomic–
molecular Bose–Einstein Condensate (amBEC) are de-
termined by an universal energy density functional. At
temperatures lower then the binding energy of the shal-
low molecules (dimers) the chemical potentials for the
atoms and molecules can be specified independently. Be-
sides three–body recombinations processes, inelastic pro-
cesses involving the formation of deep bound molecular
states are possible.

In order to derive the energy density of an atom-
molecule gas let us first consider the dilute regime where
nr30 � 1, with n a typical atomic or molecular density.
The particle momenta relevant in this regime are of the
order of p = h̄k ≈ h̄/n1/3 � h̄/r0 thus the details of the
potential are not important and the atom interactions
can be described by a contact term
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where ψ†
a, ψa are creation and anhiliation operators for

atoms. The value of λ2 is determined by the scattering
length a. λ3 depends also on a genuinely three-body
length scale, denoted here by a3. The hamiltonian in
Eq. (1) contains, in priciple, all the information necessary
to describe the system in the dilute regime, including the
molecular states. In the case a� r0 we are interested in,
the presence of bound states within the regime of validity
of Eq. (1) evidences the fact that perturbation theory
breaks down. Thus, it is incovenient to use it directly.

We can now consider now a regime even more dilute,
where na3 � 1. The relevant typical momenta are of the
order p = h̄k ≈ h̄/n1/3 � h̄/a � h̄/r0. We can argue

though that trasitions altering the number of molecular
states are “slow” in this regime and, consequently, for
time scales shorter than the transition rate, the num-
ber of atoms and molecules are separately conserved. A
hamiltonian describing the system in this regime is
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Both Ha and Ham are applicable in the na3 � 1 (p �
h̄/a) regime. Despite its smaller validity range (na3 � 1
versus nr30 � 1), Ham is useful since we can do pertur-
bation theory with it since all non-perturbative physics
occuring at the scale ∼ a leading to the formation of
the bound state and the Efimov effect is encapsulated
in the constants λaa, λam and λmm. This leads to the
determination of the constants of Eq. (1) in terms of
those in Eq. (1), and we have provided the specific non-
perturbative formulae valid in the regime of interest.

Particularly interesting are however the inelastic
atom–dimer and dimer–dimer collisions. If the temper-
ature of the system is significantly lower then the dimer
binding energy,these inelastic collisions are not going to
lead to a heating of the system, but mostly to its de-
pletion. If an atom and a dimer collide and the dimer
forms a deeper bound state, a large amount of energy
is released and that the shallow dimer binding energy is
significantly larger than the interaction energy as well.
The momentum of the outgoing atom and of the deeply
bound dimer are of the order h̄/r0 � h̄/a and such fast
atoms and dimers will interact weakly with the rest of
the atoms and dimers.


